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1.0 INTRODUCTION

The objectives of the Atmospheric Electricity Hazards Protection (AEHP)
program are to develop design criteria, guidelines, and qualification test
procedures for mitigating any atmospheric electricity vulnerabilities of
electronic equipment in future advanced aircraft structures. The emphasis is
on findirect effects of lightning/static electrification and their induced
electrical transients in aircraft wiring rather than direct arc/spark effects.

Potential hazards to electronics equipment within an aircraft encountering
natural atmospheric electricity depends strongly on the interaction of
airframe structure with a lightning strike and its associated electromagnetic
fields. The physical processes whereby electrical transients are induced by
Tightning or static electricity within an air vehicle wiring installation are
significantly different than processes previously considered for structural
damage due to directly attached 1ightning. The most important difference for
electronic effects is the need to consider rate-of-rise parameters for
currents and fields because inductive and capacitive coupling dominates
fnternal transients when circuftry is isolated from vehicle structure. Peak
values and time duration of current and fields are also important in
determining voltages and currents within the structure. Pulse energy is also
important in determining the rating for transient protective devices that may
be required to absorb energy from the 1ightning induced transients.

Physical understanding of the experimental data sources that define lightning
and static electrification environments are important in determining the
critical rate of rise parameters. These parameters are especially important
for determining currents and electromagnetic fields associated with aircraft
interaction with the AEH threat environments.

1.1 OBJECTIVE AND SCOPE

The objective of this document is to provide definition of the AEHP program
threat environment. This threat document will be revised periodically to
provide the "best" current definition of AEH threats. This issue summarizes
the initial atmospheric electricity threat to be used for definition of the
tightning threat at the ground. The experimental basis for this threat is
critically reviewed. Comparisons with statistical data are made as well as

.....................
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‘§£ ) comments on the validity of this data. Comments on on-going l1ightning/static
LY electrification data collection programs are made. This data will {mpact the
ﬁ% final threat definition. An initial threat definition is needed to support
%ﬁ the Phase I environmental impact tests. A final AEH threat definition will
e arise out of additional studies of existing data as well as new data as it
ﬁd becomes available.

W

o 1.2 THREAT SUMMARY

ﬂ The problem of determining the atmospheric electricity (AE) threat to afrcraft
iiﬁ in flight has been examined for many years. More recently due to research
! g into advanced composite material having poor electrical properties compared to
at metals, interest has increased in better definition of the AE threat to
vy aircraft and electrical/electronic equipment. The severity of the threat will
ﬁl determine the equipment protection necessary for aircraft all weather
DY operation.

1

~ - Natural atmospheric electricity presents two separate hazards: 1ightning and
static discharges due to aircraft charging. The mechanism of a natural cloud-
W to-ground 1ightning discharge is 1llustrated i{n Figure 1.1. When sufficient
charge accumulates in the lower part of a cloud to cause an electric field
which exceeds the fonization threshold of air, an electrical discharge is
o initiated toward the earth. Because the discharge requires a finite amount of
charge and time for the channel resistance to lower to the arc phase, the
k,‘ discharge proceeds in a sequence of steps, pausing periodically to allow the

previous channel section to become fully conducting. This mechanism is known

$$ as the stepped (or step) leader process.

b

3§§ The natural electrical phenomena occurring with 1ightning discharges vary in
" number and intensity. A statistical basis is needed to define a threat
ﬁ& because of this varfability. A moderate threat level {s defined as the
§§: expected levels from a typical lightning flash. Severe lightning is defined
ga' as a reasonable worst-case level expected to occur during the service Vife of

an aircraft. The maximum rate-of-rise and peak current values that represent

i, the severe 1ightning threat are currently subjects of on-going current
‘"i research into 1ightning hazards to aircraft in flight.

Ko

e There 1s currently {insufficient statistical data from efforts to measure
i£$ 1ightning currents on aircraft in fiight that allow definition of a worst-case
2 2




threat. Recent in flight data from the NASA Storm Hazards program has shown a
worst-case value of 80 kA/us for low level current from a cloud-to-cloud
strike.

The best available statistical data on 1ightning currents is data measured on
the ground. Currently published data on cloud-to-ground lightning currents
measured on the ground show that 180 kA/us is the largest rate of rise
directly measured. Recently obtained data on lightning currents inferred from
measured electric fields are as high as 400 kA/uys. Both of these
measurements are subject to uncertainties in the measuring techniques. These
1imitations will be discussed in Chapter 2. The best engineering judgment at
present is that 200 kA/us adequately represents the worst-case expected for
an aircraft in flight and is defined as the severe level for AEH threat.
Additional research is needed to resolve the difference between the defined
severe threat and the distant field measurements.

The defined parameters for the AEH 1ightning threats to aircraft are shown in
Table 1-1.

TABLE 1-1 AEH LIGHTNING THREAT PARAMETERS

SINGLE MAXIMUM TIME
STROKE PEAK RATE OF TO HALF ACTION

THREAT CURRENT RISE AMPLITUDE INTEGRAL
Moderate 20 kA 50 kA/us 50pusec 1.5 x 104 A2 -sec
(Expected) .

Severe 200 kA 200 kA/us 50usec 1.5 x 106 A2 -sec

"Multiple Stroke Events - Flash (Moderate and Severe)

o Transient 50-500 psec o Duration of 2 sec
Duration Flash

0 Interstroke 10-100 msec 0 Number of 24
Interval Strokes

A second threat to aircraft from atmospheric electricity occurs due to
aircraft charging effects. As an aircraft moves through the air, it can
become charged. This can result in discharges either by streamering, corona
or arcs and sparks.

»
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Figure 1.2 shows these discharges from various sections of an aircraft. Arcs and
sparks can create direct damage effects especially in fuel tanks. Proper
grounding and bonding can usually eliminate these problems. Noise problems from
. corona or streamering phenomena is not so easily eliminated. These noise levels
: must be established as a part of the total atmospheric threat levels to
" aircraft. The static electrification threat is vehicle dependent as described in
5 Sections 6 and 7. .

IS AN

The organization of this document is as follows. Lightning threat is discussed

3 in Chapters 2 and 3. Chapter 2 describes the literature review and discusses the
;1 choice of the best data for threat definition. Chapter 3 outlines the ground

lightning threats, both moderate and severe, and discusses their correlation with
i available data. Chapter 4 discusses the applicability of 1ightning models as a
li tool 1in extrapolating the lightning threat to aircraft altitudes. Chapter 5
- reviews the static electrification threats from streamers and corona. Chapter 6

1ists parametric threat levels for both lightning and static electrification.
Chapter 7 will discuss meterological phenomenon and will be completed for the
-% final threat documentation. Chapter 9 summarizes the document content and makes

[ recommendations for future work.
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2.0 REVIEW OF AVAILABLE LIGHTNING DATA

2.1  INTRODUCTION

Lightning is a transient, high current electric discharge. The most common
source of lightning arises from the electric charge separation in ordinary
thunderstorm clouds (cumulonimbus). Well over half of all 1lightning
discharges occur within the cloud (intracloud discharges). Cloud-to-ground
1ightning (sometimes called streaked or forked 1lightning) has been studied
more extensively than other forms of 1lightning because of its practical
interest (e.g., as the cause of disturbances in power and communication
systems, strikes to aircraft and the fgnition of forest fires) and because it
is more easily observed with optical instruments. Cloud-to-cloud and
cloud-to-air discharges are less common than intracloud or cloud-to-ground
11ghtning.

Lightning strikes to aircraft are thought to involve both cloud-to-ground
discharges (at low altitudes) and intracloud events (at high altitudes). The
1ightning data discussed in the present document includes only cloud-to-ground
events. This data will be used to establish a ground based threat. A later
version of this document will examine the airborne threat which will {nclude
cloud events.

A typical cloud-to-ground discharge starts with a preliminary breakdown within
a cloud followed by a stepped leader initiating the first stroke (see Figure
2.1). Leader steps are usually luys long, tens of meters in length, with a
pause between steps of 50us. The typical leader current {s the order of

1 kA.

As the leader nears an aircraft, it enhances the local fields. Discharges off
the extremities of the aircraft are produced when the field values reach air
fonization levels. When the stepped leader connects to one of the aircraft
discharges, it becomes merely a part of one step as the stepped leader
proceeds to ground or another charged cloud.

As the Teader tip nears the ground, an upward moving discharge is initiated at
the ground (see Figure 2.2). The leader channel is discharged as a ground
potential wave, the return stroke, propagates up the fonized leader path. The
return stroke has a much higher current than a leader, an average.of 20 kA
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with maximum up to 200 kA and a rise time of few microseconds. The return
stroke may be followed by a dart leader which initiates a subsequent stroke
(see Figure 2.3). Subsequent strokes have faster rise times but comparable
rates of change to return strokes. Many additional complete discharges called
multiple strokes can take place. In general, these subsequent strokes have
smaller magnitudes. Establishing the size of these threats is the first part
of establishing an AEH threat.

2.2 DATA SOURCES

The data needed for estabishing aircraft lightning threat parameters are
measurements of direct 1ightning strike currents and EM fields on aircraft at
altitude. Lightning strike data measured on aircraft are not yet well
understood because of the limited number of validated measurements. Two
recent programs to gather more strike data at altitude are the NASA Storm
Hazards Research F-106 and USAF C-130. This data will be used to aid in
understanding the threat level at altitude.

The available data necessary to establish an aircraft lightning threat
characterization is 1imited. Of all the types of 1ightning processes (leader,
dart leader, J & K changes, preliminary breakdown, etc.), the most critical
processes to afrcraft safety are thought to be first return and subsequent
strokes due to high current levels, high current rise rates and high energy
inputs into aircraft systems. Data on these processes are for the most part
confined to ground measurements of electric and magnetic fields, current
waveforms, and stroke velocities (see Chapter 2 reference 1ist for each topic).

Ground parameters are thought to be the worst case situation for lightning
threats. Current and field amplitudes and rate of rise are thought to
decrease with altitude. Hence, the most severe lightning threat to aircraft
is a severe 1ightning strike on the ground.

The initial lightning threat outlined in this document is based on these
ground measurements. The final threat will take into account altitude effects
including in flight data.

2.3 DATA APPLICABILITY

The present threat definition {s based on ground based direct current
measurements. The data sets used were taken from available statistical
studies on measured 1ightning current parameters.
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Lightning current parameters derived from distant EM field measurements were
not used in the 1initial threat definition. The statistics were not yet
available when establishing the threat.

The errors associated with both direct current measurements and currents
derived from field values should be established. This will allow a8 more
. complete and thorough use of the presently available data.

The following sections describe the major experimental efforts. The author
date references are for chronology. Specific data sources are identified in
the chapter where the data is discussed.

2.3.1 Berger, Garbagnati

Berger (1975) in Switzerland and Garbagnati (1982) in Italy have made a serfes
of direct current measurements using towers on mountain tops. Berger's data
is measured on a 70 m tower on top of Mount San Salvadore which is 914 m above
sea level. Garbagnati's measurements are from 40 m towers on Italian
mountains near San Salvadore. Berger's latest data is comprised of 101
negative and 26 positive first strokes and 135 subsequent strokes. Garbagnatt
has 103 negative and 5 positive first strokes and 175 subsequent strokes.

Uncertainties assocfated with both Berger and Garbagnati's data arise from the
fact that both used towers on rocky mountain tops. The presence of the tower
may have two effects on the data taken. The presence of the tower may
influence the statistics of the 1ightning strikes. For example, larger
amplitude strokes are thought to strike tall towers. The distance over which
a structure attracts a downward leader is a function of the charge on the
leader which, in turn, is related to the amplitude of the current in the
return stroke (Golde, 1977). It would thus follow that 1ightning strikes to
open ground should have a greater proportion of lower currents while taller
structures might be expected to be subjected to a higher number of more
intense currents. Another statistical fluctuation may be in the number of
positive strokes seen. Evidence exists that positive flashes may increase
with altitude (Berger, 1975; Erikson, 1978). If this trend holds true to
afrcraft altitudes, then any statistics taken near the ground will not be the
statistics at altitude. The statistics of 1ightning strikes to aircraft are
the statistics of interest here. Any way of measuring 11ightning strike
statistics other than from strikes to the specific aircraft under mission
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conditions will not reflect the true statistics of interest. Obviously,
compromises on this {ssue will have to be made and some estimates of the
errors involved should be established.

The presence of a tower in direct current measurements also affects the
measurements themselves. The maximum rise rate {s effected by the tower
inductance and ground impedance effects. This would tend to lower the
observed rise rates. The magnitude of this effect needs to be established.
The early time portion of the waveform may also be effected due to the
presence of the upward-going leaders which may lead to slower rise times for
tall objects (Cianos and Pierce, 1972). Both effects could imply the current
rise rates measured on towers are too low.

The leader effect should be more pronounced for first return strokes than for
subsequent strokes since subsequent strokes are not thought to have long
upward propagating leaders. Both Berger and Garbagnati's data show much
higher rates of rise for subsequent than first return strokes while Uman
(1973) and Weidman and Krider (1978, 1980) report no difference in current
rates of rise derived from fields.

2.3.2 Uman and Krider

Uman and Krider have spent many years measuring electric and magnetic fields
of various types of lightning (e.g. Lin et al 1979, Tiller et al 1976, Uman et
al, 1976, Uman et al 1973, Weidman et al 1981). They have found much higher
field rise times (under a microsecond) than have been seen in direct current
measurements. The fast rise times were seen in measurements over salt water.
Propagation over salt water does not attenuate the high frequencies as
severely as earth. The reported upper frequency 1imit of these measurements
is 20 MHz (Weidman et al 1981) due to wave action influencing measurements
above 20 MHz. This data is very useful in establishing validity of a physical
current model from which EM fields can be calculated and compared to the
measured results.

To use this data 1in estabishment of a 1lightning current threat, the
uncertainty associated with deriving currents from EM field measurements must
be established. First, uncertainties arise from the measurements due to
equipment limitations, resonance effects, propagation effects, etc. Second
and more serious are uncertainties due to the assumptions in the current
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models and the number of parameters needed to fit the data. The first type of
uncertainty can be readily quantified. The second needs to be examined. In
Uman's model, current is assumed to propagate up the channel at constant
velocity. The channel §s taken to be vertical with the initiation of the
stroke at the ground. Three types of current profiles (uniform or leader
current, breakdown current and corona current) have been incorporated to fit
simultaneous electric and magnetic fields at two distances. The pulse
velocity is an 1input to the model and s not well known. Assuming the
velocity to be constant with height may also add uncertainties to the
results. The corona current shape is somewhat arbitrary as stated by Lin et
al (1980). The non-uniqueness of the current decomposition is a major problem
and the uncertainties due to this have not yet established. The assumptfon
that the initfation point is at the ground and not some distance above has
been argued (C. Baum private communication) to introduce a factor of two error
due to the two return front waves produced above ground. Lastly, the effect
of the assumptions that the column is vertical and straight must be taken into
account. Due to the above assumptions, error bars on measured field data and
Tightning current model assumptions must be established before the data can be
incorporated into the AEHP l1ightning threat definition.

2.3.3 Others

Other data sources are listed in the Chapter 2 reference 1ist (taken from a R
review by Uman and Krider, 1981). Only a few names will be specifically 4
mentioned here. The recent review by Uman and Krider (1981) contains an

o
extensive review of the l1ightning 1iterature. %
Data summarized by Cfanos and Pierce (1972) was used in establishing the .
initial lightning threat. This data was a compilation of work prior to 1972 ]
and is Timited by the rise time resolution used in the data collection. This

skews the results toward longer rise times and lower rise rates.
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Data collected and reviewed by Popolansky (1972) {include not only results R
obtained on tall chimneys and 1ightning rods but also the negative and

positive first strokes recorded by Berger, totaling 624 waveforms. The

resulting cumulative frequency distribution curve produces a median value of

28 kA. Berger et al (1975) conclude that the median values obtained on Mount

San Salvatore and on tall chimneys in open country are similar. However, it

should be pointed out that the slopes of the curves of best fit for these two

data sets do not coincide completely (iie Figures 3.9 and 3.10, next chapter).
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Anderson and Erikson (1978) in Soath Africa measured lightning currents on a
tower located in open country. Unlike Berger and Garbagnati, the measurements
were taken on relatively flat terrain. Only a. small number of strokes
ot (eleven) were analyzed with a maximum current rise rate of 180 kA/us for a

L,

4

" subsequent stroke. This is a higher level both in absolute value and relative
3 percentage than Berger and Garbagnati's measurements. With so few events,
:5 however, definite comparisons are premature. ,
- Recently current waveforms are being measured in aircraft in flight by NASA
f (see Pitts 1981 and Pitts and Thomas 1981). To date cloud discharges dominate
- their results. The 1983 program will attempt to measure some cloud-to-g:ound
W strikes.
} Return and subsequent stroke velocity data have been measured using luminosity
_j data (e.g. Orville, 1968; Boyle and Orville, 1976; Lin et al, 1979; Hubert and
3 Mouget, 1980; Jordan and Uman, 1980; Weidman and Krider, 1980). The data has
a wide varifatifon of velocities ranging from 2 x 107 m/sec to 2 x 108

m/sec. Typically the data only allows calculation of an average velocity
. found by knowing the distance traveled divided by the elapsed time. This data
- can be used to compare lightning model results for height variation of
velocities. This data can also be used to estimate some of the uncertainty
present in calculating current waveforms from field measurements.

RMNOLY

2.4 CONCLUSIONS
o To correctly assess the ground l1ightning threat, the avatlable data sets
’j (Berger, Garbagnati, Uman, Eriksson, Cianos and Pierce and Popalansky) must be
Ej critically assessed as to accuracy and limitations. The earlier data (Cianos

W and Pierce and Popalansky) do not reflect the recent fast rise times measured
and so are biased to smaller rise rates. Both tower current data and current

2 values derived from field measurements are subject to uncertainties. These

,E uncertainties need to be quantitatively assessed before used as a basis for

™ the final current threat levels.

- 2.5 BIBLIOGRAPHY

fﬁ The following bibliography of AEH phenomena is included for locating sources

- of AEH data. The entries were obtained from a literature review initially

f'“ collected by M. Uman and E. P. Krider.
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3.0 INITIAL LIGHTNING CURRENT THREAT DEFINITION

The initial AEH 1ightning threat defined in this chapter will be shown to
match well with the most recently published statistical 1ightning data. Two
sets of parameters are used to fdentify a moderate or expected 1ightning
stroke and a severe or worst-case stroke. The 1lightning threat {s not
designed to match the physical parameters of a particular 1ightning stroke but
rather to be representative of the range of values for the many types of
1ightning discharges.

3.1 LIGHTNING THREAT

The parameters of most importance in this 1ightning threat were chosen because
of their impact on afrcraft electrical/electronic systems. These parameters
include maximum current rise rate, peak current and energy input (action
integral). The selected values were chosen from a review of existing data.
They are shown to be consistent with statistical variations of other available
data in the following sections. Other characteristics of the waveform (rise
time and fall time) are determined uniquely by choosing the above three
parameters since the threat model has only three independent parameters. Even
so, both rise and fall times are well within the statistics of measured data.

The 1lightning threat must characterize both single and wultiple stroke
phenomena. Multiple strokes will be characterized by several single strokes
with the addition of induced transient duration, inter-stroke time interval,
total event time and total number of strokes. These parameters are 1isted in
Figure 3.1.

The {inftial single stroke lightning threat model is a double exponential
waveform representing the lightning current; the waveform and spectrum fis
shown in Figure 3.2. The double exponential form of the 1ightning threat
model will be shown to adequately predict the expected electric field spectra
from a combination of measured 1ightning discharges. This threat is to be
interpreted as the current flowing in the unperturbed 1ightning arc channel
(i.e., no aircraft interaction). In applying the threat to an aircraft, an
electromagnetic coupling model {s needed which includes the aircraft and
channel geometry and includes the threat as an incident current waveform
propagating along the channel.
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The double'exponential waveform, which is a convenient model for engineering
calculations, has a historical precedent in both 1ightning and NEMP (Reference
3-1). The waveform parameters are selected to include the most important
features of the lightning current rather than to faithfully represent any
single 1ightning waveform. The three lightning parameters incorporated in the
threat waveform are peak rate-of-rise, peak current, and action integral. The
wmoderate and severe threats were selected to be expected and worst-case levels
of the parameters based upon review of the best available measured data.
Figure 3.3 shows these threat parameter values and the defining equations for
the double exponential current waveform.

3.2 RATIONALE

No single waveform can regpresent all types of lightning discharges (e.g.,
cloud-to-ground, fintracloud, positive strokes, negative first strokes, and
negative subsequent strokes). It is necessary to select parameters from
particular stroke types which provide reasonably conservative threat levels
for all strokes. Cloud-to-ground strokes were chosen because they are
generally more severe, although a less frequent threat to aircraft, than
intracloud discharges. On this basis, the threat waveform parameter values
were chosen as described below.

3.2.1 Peak Rate-of-Rise

Rise rate data displayed by Cianos and Pierce has recently been interpreted to
be too low. More recent statistical data [References 3-4, 3-6, 3-8, and 3-13]
has shown higher current rates of rise. The values for the {nitial threat
determinatfon were taken from Berger's [Reference 3-6] tower measurements.
The moderate value of 50 kA/ys 1fe at his upper 35% mark while the severe
threat of 200 kA/us was chosen at his 1% level.

3.2.2 Peak Current

The peak current was chosen from the statistical study done by Cianos and
Pierce [Reference 3-7]. The moderate threat level of 20 kA was chosen at
their 50% level for first return strokes. The severe threat of 200 kA was
chosen at their upper 1% level.

3.2.3 Action Integral

The action integral was also chosen from Cianos and Pierce data. Peak current
values and mean rise and fall times were used to determine a moderate energy
-s and a sevgre level of 1.5 x 106A2-s.
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3.3 COMPARISON TO PRIOR LIGHTNING STANDARDS

In this section the lightning threat defined in Figures 3.1 through 3.3 is
compared against other industry lightning standards. Table 3.1 summarizes
comparisons between previously used standards and the present threat
definition. Only the severe threat {s compared since the other standards
represent severe strikes.

The maximum current rise rate of {industrial lightning threat standards are
given in Table 3.1. The values in parenthesis are obtained from the peak
current value divided by the rise time for the corresponding standard. This
gives an average rise time or a2 maximum rise time {if the initfal current
waveform is a straight line. The straight 1ine waveform for the i{nitial
current rise is used in the SAE-4L standards. The rise time for the AEH
threat is the peak rate of rise, not an average. For a double exponential
waveform these quantities are substantially different. The peak rate of rise,
not the average, is the important quantity when specifying a 1ightning
threat. This difference between peak and average rate of rise leads to the
AEH higher standard for rise rate.

The peak and average rate of rise definition also leads to an AEH rise time
different from other industry standards. These rise time differences are
shown in Table 3.1. The longer AEH rise time is due to the double exponential
waveform used. Other standards use linear ramp functions. However, the rise
rate, not the rise time, is the important parameter when considering possible
damage to electronic equipment.

The peak current and fall time are listed in Table 3.1. The AEH i{nitial
threat values agree with those previously used.

3.4 LIGHTNING THREAT COMPARISON TO MEASURED DATA

The data presented, for comparison between the AEHP defined threat and
11ightning measurements, is the most recent found in the l{terature. Each
model parameter {is examined separately below. Two summary tables of
experimental statistics are given in Tables 3.2 and 3.3. The first table is
taken from Berger (Reference 3-2). The second is from Garbagnati and Lopiparo :
(Reference 3-4). Tables 3.2 and 3.3 summarize the data from References 3-2 ;
and 3-4 from which most of the data comparisons in this section were made.
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A11 the AEHP threat parameters are within reasonable statistics of this
database. Detailed comparisons with recent individual experimentors are given
in the following subsections.

3.4.1 Uman-Krider Measured Field Data Comparison

A comparison is made in this section to measured electric fields presented by
Uman and Krider (Reference 3-7). The comparison of a Tlightning current
profile to electric radiation field data is not straightforward if 1ightning
geometry, propagation effects, height dependence of lightning current, etc.
are taken into account. Since the comparison presented here {s meant to be
preliminary, a simpler procedure will be followed. The magnetic radiation
field 1s calculated from an 1infinite current carrying wire. This
approximation is valid close to the wire (less than a wavelength away). This
minimum distance is 300 km for 1 KHz and goes to 3 Km at 100 KHz. The electric
radiation field is obtained from the magnetic radiation field assuming free
space radfation. The results for both moderate and severe current profiles
are plotted in Figure 3.4 against Uman and Krider's (Reference 3-7) electric
field spectra for first strokes. Also plotted are NEMP results for
comparison. The threat models tend to be well above the data for low
frequency and straddling the data at higher frequency. The shape of the
frequency spectra of the predicted fields versus the measured fields is fairly
good. Of course this assumes no dispersion effects occur in propagation.
This 1is not the case especially at higher frequencies or where the earth is
very lossy. Newer measurements by Krider are over salt water having low Joss
propagation.

Figure 3.5 taken from Reference 3-7 shows frequency spectra from different
1ightning discharges. The solfd line represents the first return stroke
data. A1l the discharges shown are on top of or close to the first return
stroke data. This justifies our use of AEH threat comparison to first stroke
data in Figure 3.4.

3.4.2 Current Rise Rate

The single stroke threat model value for maximum current rise rate is given in
Ffgure 3.3 as 50 kA/us for a moderate stroke and 200 kA/us for a severe
one. The values correspond to the upper 35% and upper 1% as shown in data
from Berger (Reference 3-2) in Figure 3.6. Note that no measurements were
made with rate of rise greater than 100 kA/uys. Figure 3.7 shows older data
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accumulated by Cianos and Pierce (Reference 3-5). The moderate and severe
threat correspond to the upper 12% and upper 0.1% values. The Cianos and
Pierce data is actually average rates of rise rather than maximum values.
Thus the threat values show as higher percentiles as compared to Berger's
data. Data from Garbagnati (Reference 3-4) of two different data sets (first
and subsequent strokes) is shown in Figure 3.8. The moderate threat is at the
10% mark in (a) and 35% in (b). The severe threat is at 3% in (a) and 1.5% in
(b). These statistical values correlate well with the choice of rise rate
picked in the current threat model.

There is considerable uncertainty in the maximum rate of rise values. It
should be noted that the largest current rise rates measured by Berger or
Garbagnati and Lopiparo were 102 kA/usec. This data may be low because of
instrumentation bandwidth 1imitations and the tower heights. No data has been
directly measured showing current rise rate greater than the 180 kA/us
reported by Anderson and Erickson. Anderson and Erikson (1978) in South
Africa measured lightning currents on a tower located in open country. Unlike
Berger and Garbagnati, the measurements were taken on relatively flat
terrain. Only a small number of strokes (eleven) were analyzed with a maximum
current rise rate of 180 kA/us for a subsequent stroke. This is a higher
level both 1{in absolute value and relative percentage than Berger and
Garbagnati's measurements. With so few.events, however, definite comparisons
are premature.

Higher rate of rise values (up to 400 kA/us) have been reported (Reference
3-8) but are inferred from distant electric fields.

Consequently, the AEHP threat value has been adjusted upward to 200 kA/us.
This is based on engineering judgement of where the real threat is expected to
be. Further testing is needed to resolve the threat uncertainty but it is
expected to be within a factor of two of the present AEHP threat.

3.4.3 Peak Current

The peak current values were taken from Poplansky's data (Reference 3) shown
in Figure 3.9. The moderate (20 kA) and severe (200 kA) threat values were
chosen at 60% and 1% respectively. Data in Figure 3.10 from Berger (Reference
3-2) show these values to 1ie at 80% and 0.1%, respectively. Figure 3.11 is
data from Garbagnati (Reference 3-4). The moderate threat is at 80% in 9(a)
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and 60% in 9(b). The severe threat is less than 0.1% in both figures. The
moderate threat is close to a median value in Figures 3.9 and 3.11 and seems
to be a good choice. All the data but Poplansky's have smaller current values
near the severe threat 1imit. Our use of 200 kA seems justified, at least
initially, on the basis of prior industry standards and because the 200 kA is
above the 1% levels of Figures 3.9 and 3.11 and so includes at least the 1%
level in the other data sets available.

3.4.4 Action Integral

The last parameter chosen in the threat definition is the energy input or
action integral. Figure 3.12 shows the Berger data. The percentiles for the
moderate threat energy case range from 25% to 85% for negative subsequent and
first return strokes. The severe threat is at 1% of the first negative stroke
and < 0.1% for the subsequent stroke. The severe threat level agrees with
the first return stroke and is overly severe for subsequent.

Figure 3.13 presents data from Reference 3-4. 3.13(a) has moderate and severe
threat energy levels at 82% and 1% while 3.13(b) has 48% and < 0.1% levels.
The moderate threat agrees with the subsequent stroke data and is not severe
enough according to first return stroke data. The severe threat level is
overly severe for the subsequent and adequate for first return strokes.

3.4.5 Rise Time

The rise time of the threat 1s a consequence of fixing the maximum current
rise-rate, the peak current and the action integral. Rise time is not fixed
independently of these parameters. Consequently, comparing rise time to data
gives an indication of the general adequacy of the form of the double
exponential used to model the 1ightning current. Figure 3.14 from Reference
3-2 shows the moderate threat value of 2us falling at 25% and 95% for
subsequent and first strokes respectively. The severe threat of 4ys lies at
the 6% and 70% mark. Figures 3.15a and b show results from Reference 3-4.
Figure 3.15a shows moderate and severe percentile of 70% and 43%. Figure
3.15b shows values of 25% and 3%. The data is widely scattered over a large
range of rise times. The values chosen fall within this middle range of the
data.

Figure 3.16 from Reference 3-6 shows results that have very short rise times
(<lus). These results were taken over salt water. The relationship to
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o data taken over land is not completely understood but the rise time should be

5 slower over land than over water. This data indicates that much shorter rise
f times may have to be included in a future threat. The impact of short rise
K times on the lightning threat is through the related parameter rise rate.

Generally the shorter the rise time, the higher the rise rate, although the
relationship is waveform dependent. Current rise rate values directly affect
the amount of protection an aircraft must have to guard against lightning
strike cause equipment malfunctions.

(P RIF Ry VTR R N

3.4.6 Fall Time to Half Peak

3 The fall time, 1ike the rise time, is determined by the preceeding parameters
so the fall time was not fit to the measured data in defining the threats.
Figure 3.17 from Reference 3-2 shows the moderate and severe threat time of
50us to lie at 30% and 80% for negative subsequent and negative first
strokes respectively. Figure 3.18 has data taken from Reference 3-4. The
AEHP threat fall time ranges from the 35% to 75% level in 15(a) and {s 30% in
F 15(b). The threat value is well within the median range of the above data.

3.5 LIGHTNING THREAT TEST WAVEFORM

Uman (Reference 3-8) proposed 11ghtning threat waveforms for both first return
and subsequent strokes. A separate waveform for testing must be used since
the double exponential form cannot easily be produced in a laboratory. The
double exponential peak rate of rise may be limited by stray inductance and
capacitance in a test configuration since the peak occurs at zero time. The
purpose of this section is to examine the sensitivity of the time domain
current waveform on the frequency spectral components. The second aim is to
compare the initial AEHP lightning threat waveforms with both Uman's proposed
threats and a recommended test waveform.

Pl
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The choice of a representative waveform of a 1ightning threat useable for test
and analysis must consider both time and frequency domain profiles. The use
of a piecewise continuous waveform can introduce high frequency nulls which

4 are undesireable for most analyses because of the lack of frequency content
and hence response. The use of a smooth continous function for analysis is
¢ desired to generate a smooth continuous frequency spectrum with no such

nulls. Real test waveforms will be smoothed by the generator turn-on and
parasitic R/L/C elements. Double exponentials have been shown to bound in
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both time and frequency domains more complex time domain waveforms. The
purpose of a lightning test waveform is to bound both in time and frequency
the important parameters of 1ightning.

3.5.1 Recommended Test Waveform

The recommended test waveform shape is a sine wave with an exponential tail.
A comparison of the recommended test waveform with the double exponential
threat waveform i{s seen in Figures 3.19 and 3.20. The time domain waveforms
are shown in the first figure. The comparisons are done for a severe threat.
The frequency spectra {s shown in Figure 3.20. The double exponential and
test waveforms match well in the frequency domain. Thus, the proposed test
waveform should represent the double exponential threat well.

3.5.2 Comments on Uman's Threat Waveform

Figure 3.21 shows Uman's proposed 1ightning current waveforms for both first
return and subsequent stroke (Reference 3-8). The waveforms both go to zero
at t = 0 and t = 300 ys. The maximum rise rates for the two waveforms are
750 kA/us for the severe first return stroke and 600 kA/uys for the severe
subsequent stroke. Uman's severe, threat rise rate values were chosen to be a
factor of five larger than the moderate rise rate values derived from field
data.

3.5.3 MWaveform Sensitivity

The sensitivity of spectral content was examined for various choices of time
domain waveforms similar to Uman's threat. Uman's severe first return stroke
profile is shown in Figure 3.22 (solid 1ine). The first change to this
waveform was to delete the ramps running from t = 0 to t = 100 us and from
t =200 to t = 300 ys and then to normalize the current amplitude to zero at
t = 100 and t = 200 pus. The maximum rise rate was left unchanged. The
second alteration was to fi11 {n the notch present after the maximum amplitude
is reached. This change is shown by a dotted line near the peak amplitude in
Figure 3.22. Again the maximum rise rate was left unchanged. The spectra of
the waveforms are shown in Figures 3.23 and 3.24. Figure 3.23 shows a
comparison of the original waveform to one without the ramps. The only change
is at the low frequency end of the spectrum as expected. No difference above
10 KHz exists. Figure 3.24 shows the waveforms with and without the notch
present. Again there 1s very little difference over the entire spectrum.
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3.5.4 Threat Comparison

Comparison of the initial AEHP threat with Uman's waveforms and a sample of
Berger's (1975) data selected by Uman is shown in Figure 3.25-3.28. Figures
3.25 and 3.27 show the time domain waveforms while Figures 3.26 and 3.28 show
the associated spectra. Both the {initial AEHP threat and Berger's data
envelope Uman's threat waveforms except at early time. Uman picked 750
kA/us for his first return stroke threat and 600 for his subsequent stroke
threat. Berger's example has values of 70 kA/u for first return stroke
(upper 20% of his data) and 360 kA/ps for subsequent strokes (extremely
severe, less than upper 0.1% of his data). The AEHP threat values are 200
kA/us for severe threats and 50 kA/us for moderate threats based on both
first return and subsequent stroke data. Upper bounds and reliable statistics
for high rates of rise are not yet well established. Therefore, Uman's high
rise rates may well be indicative of a more severe lightning stroke than the
upper 1% level taken for the basis of the AEHP threat.

These high rise rates are also reflected in the frequency spectra in Figures
3.26 and 3.28. The initial AEHP threat bounds both Berger's data and Uman's
waveform at lower frequencies for both first return and subsequent strokes.
At higher frequencies, Uman's threat is higher than either Berger's data or
the AEHP threat level. Again this is due to the rise rates chosen.

Uman's large rise rate values are chosen from current parameters derived from
EM field measurements. These values are subject to uncertainty due to the
deconvolution from fields to currents. This process is nonunique and many
assumptions must be made as to the current waveforms. The lower AEHP threat
levels are taken from tower measurements. These values are also subject to
uncertainty due to tower-lightning interactions as discussed in the 1last
chapter. Quantitative evaluations of both Uman's field data and the tower
measurements must be done to establish a better statistical base for rise rate
values.

3.5.5 High Frequency Content

The last point to be addressed here regards the hfigh frequency shape of Uman's
waveforms. Above 10 MHz a sin x/x type variation appears in the spectra with
deep nulls present. This type of waveform is not useful for efither testing or
analysis due to these nulls. Rather what is needed are bounding curves in the
time and frequency regime.
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The sin x/x variation is caused by the multiple discontinuities in slope in
Uman's time domain waveforms. For more than one discontinuity in slope, the !
sin x/x variation appears with the first frequency null determined by the time
spacing between the discontinuities. An example of this is the waveform given
in Figure 3.29 shown again Uman's severe first return stroke threat. The two
frequency spectra are plotted against each other in Figure 3.30. The f
discontinuous waveform plotted has nulls identical to Uman's waveforms because ;
the rise times of the steepest slope are identfcal (both waveforms steepest i
slope rise is 0.1 us - this gives the first null at 10 Mhz). r

Rather than smoothing the discontinuities in Uman's waveforms which is
tedious, a better approach is to bound the waveform and spectrum. An example
of such a bound by a double exponential waveform (but not the initial AEHP
threat waveform) is given in Figures 3.31 and 3.32. The parameters chosen for
this double exponential were chosen to bound Uman's waveform at high
frequencies. The general expression with the values chosen are shown below. )

1t) = 1, [e®F - B 1)

1,180 kA; a = 1.4 E+ 4 sec’; and g = 9.0 E+6 sec™’. 2 :
The peak amplitude of this waveform is 178 kA. The maximum rate of rise is
very high at 1600 kA/us. The spectral fit to Uman's waveform is excellent
at high and Tow frequencies. Between 10 KHz and 1 MHz there {s up to a factor

of three difference in amplitude. This double exponential serves as an
excellent example of a bounding wave in both time and frequency domains.
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Lightning Parameters Compared to Initial Threat
Berger, ot. ol., 1976 '
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1.8 x 108

AEH initiel threat

21
50

%0
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Nagative subsaquent strokes
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Negative flashes

Negative substequent strokes
Positive flashes
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Negative fisst strokes
Nogative first strokes
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Negative subsequent strokss
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Nogative first strokes
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Negative subsequent strokes
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4.0 LIGHTNING MODELING

A model can be defined as a physical or mathematical construct which
approximates to various degrees certain observed aspects of natural or man
made phenomena. In this section we will be concerned with a evaluation of
various mathematical models of lightning processes. The end product required
of the 1ightning modeling will be the prediction of both 1ightning arc current
and EM field values produced by these processes at aircraft altitudes. This
model is needed because of the spare data on the statistical variations of
lightning currents at altitude. Furthermore this data will require
considerable time to ohtain. An analytical model will supplement the aircraft
inflight measurements oy using ground statistics once the extrapolation to
altitude is established using a few measurements.

There are basically three levels of detail in current mathematical models for
1ightning phenomena:

o Physical analog model including arc, clouds, and electromagnetic
propagation

o Lumped constant electrical transmission 1ine model for arc current

o Parametric representation matching assumed arc current components to
measured EM fields at distant locations

The physical analog model describes the detailed physics of the lightning
channel in terms of equations of conservation of mass, momentum, and energy,
equations of state, and Maxwell's equations. This type of model requires a
detailed knowledge of physical parameters such as the ijonization and
recombination coefficients and of thermodynamic properties such as the thermal
and electrical conductivities. Using this basic approach, one can attempt to
predict the channel current as a function of height and time. From a
knowledge of the current, the remote electric and magnetic fields can be
calculated (e.g., Uman et al., Reference 4-1 and 4-17). Modeling of this type
has recently been attempted for lightning return strokes by Strawe (Reference
4-2) and Gardner (Reference 4-3) and holds considerable promise for providing
a better understanding of the return stroke. At present, such modeling is
lTimited by assumptions necessary to define the physical parameters.
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| % A less sophisticated level of modeling involves mathematically describing the

ey l1ightning channel as an R-L-C transmission line with circuit elements that may
Cy vary with height and time. The 1intent of these models is to predict arc
§$ channel current as a function of height and time, and to use this current to
o calculate the EM fields. Price and Pierce (Reference 4-4) and Little .
; (Reference 4-5) have used this approach for return strokes.

B W

‘{g In the least sophisticated approach to modeling, and that which has been used
?ﬁ extensively for analysis of lightning measurements, a temporal and spatial
e form for the channel current is assumed and then used to calculate the remote
" fields. The assumed current is constrained in {ts characteristics by the
:;: properties of lightning currents measured at ground level and by the available

ool data on the measured electric and magnetic fields. Lin et al. (Reference

AN 4-6) have reviewed the literature on this last type of modeling for return

?; strokes and have presented a new return stroke model which is superior to
:i; previous models of this type.

’2;‘ In the next sections, particular lightning models of the three types are

reviewed and evaluated. A summary of the major models is given in Table 4.1.

- The model chosen for the initial analysis {s Strawe's model because of
y simplicity compared to Gardner's model, it is less expensive to run than
: Gardner's and it includes physics of the 1ightning channel. Also, the results
f%; to date indicate agreement with previous spark modelling and experimental
} measurements of spark temperatures vs. time and radius vs. time. More
j complete comparisons with velocity of propagation vs. altitude are being done
as well as comparison with EM field measurements.

f& The Strawe model was chosen for use over Uman's field fitting model because of
;: the desire to predict current profiles at aircraft altitudes. The Uman model
‘!?’ does not have this capability.

e 4.1 TRANSMISSION L INE MODELS

’:i The many analytical models for predicting the arc current of lightning return

&tﬁ strokes have involved linear charged transmission lines. Models include B iyce
;; and Golde (Reference 4-7), Uman and McLain (Reference 4-8), Price and Pierce
’5? (Reference 4-4), Rosich (Reference 4-10), and most recently, Little (Reference

. 70
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4-5). These models predict reasonable peak currents, pulse durations, and
propagation velocities provided the proper time independent 1ightning channel
parameters are chosen. However, since the lightning channel expands in
diameter by over an order of magnitude during a pulse, constant parameters
cannot adequately represent the entire pulse period. More importantly for a
threat model, the linear time independent 1ine model produces a step rise in
current which contains no information on limits for current rise rate. Rise
rate determines the level of induced transients in exposed equipment during a
lightning pulse.

The return stroke of - lightning discharge in a cloud-to-ground flash can be
represented in a very simple way if the charge on the initiating leader
channel is ignored. The capacitance of the cloud then contains all the
electrical charge present, and the leader channel is a resistive and inductive
element in a simple series LCR circuit. The final step of the leader acts as
a switch which completes the circuit. The representation cannot, of course,
provide any information about the progress of the return stroke current pulse
along the leader channel. The current pulse shape is regarded as identical at
all points along the channel.

The leader channel may be treated as a uniform transmission line as a first
step. Price and Pierce (Reference 4-4) describe the development of this model
(neglecting the cloud capacitance) from the first discussions of a 1line
excited by a source at the base by Bruce and Golde (Reference 4-7). They
consider finally a finite, lossy, uniform transmission line terminated in its
characteristic impedence and initially charged to a uniform potential. The

Ei: current at the ground is found to rise instantaneously to a maximum value and
Eﬂg then decay, exponentially at first. A similar onset is predicted for current
Eﬁﬁ flow at all points of the channel, but the magnitude of the current peak falls
5.' as the height above ground increases.
S&; The behavior of the current at ground level 1is 1in general accord with
f%? observation, though peak values of dl/dt occur at t = 0, whereas there is a
i‘ delay before this peak occurs in real lightning. At very long times the
- current falls as t /% and this has some correspondence with the
intermediate current often observed.
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The fact that the line is lossy is important, since a loss-free line produces
a current in its terminating resistances that is constant between abrupt
step-changes. Such a current waveform is not typical of lightning current
pulses. Resistance reduces the importance of reflections, and any model of a
lightning channel must include resistance if a realistic current pulse at
ground level is to be reproduced. The effective channel resistance per meter
is difficult tu assess at present. It must be large enough to prevent
oscillations in the waveform at ground level, since the natural 1lightning
pulse is unidirectional.

Rosich (Reference 4-9) examines several approximate techniques for determining
the effective transmission 1ine characteristic impedance of a lightning return
stroke channel. These formulations include (1) the use of a coaxial line
model with center conductor dimension equal to that of the central arc core
for inductance calculation and of the average positive corona sheath for
capacitance, (2) a vertical line segment quasistatic (monopole) model by
Berger, (3) a dipole model with sinusoidal current distribution by
Schelkunoff, and (4) a 2 dimensional numerical (monopole) solution of
Maxwells' equations by Rosich himself. The models are all linear and with
constant (in time and position) parameters.

Rosich applies the models to a range of arc and corona radii to obtain a range
of effective characteristic impedances (Zo). Zo lies in a much more
compact range than the radial dimensions since it 1is essentially
logarithmically dependent upon them. The numbers he obtains are typified by a
50 to 500 ohm resistance in series with a few hundred picoFarads. They are
typical of the model values commonly assumed in transmission line channel

models.

Little (Reference 4-5) determines the transmission line parameters from
physical arguments considering only return strokes. To calculate capacitance,
the leader channel is regarded as a cylindrical charged conductor of small
radius extending almost to the ground with a gap between the end of the leader
and the ground. The capacitance is determined by the gap size, dimensions,
shape and height of the cloud. The 1inductance is essentially that of a
coaxial line of small radius and is constant throughout the pulse. The
resistance is taken large enough to make the current pulse undirectional but
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small enough to keep some current oscillations. A1l parameters are fixed
throughout the entire 1lightning pulse. Comparison of Little's computed
current values are compared to data in Table 4.2. The peak current values are
high compared to the data.

Lin et al (Reference 4-6) has tested the ability of the Bruce-Golde and
transmission line models to predict near and distant electric and magnetic
field data for early and late times. Figure 4.1 shows the inability of either
model to match the field data at all times. This inability to match the field
data throughout the pulse shows the necessity of having time varying
parameters to specify 1°‘~htning characteristics. Also the inability to match
both near and far fields simultaneously points out the desirabilty of
including self-consistent physics in defining the current channel.

4.2 CURRENT MODELS DERIVED FROM FIELD DATA

Modeling attempts using field data to determine 1lightning current
characteristics are discussed in this section. The current is time and height
dependent, an improvement on the previous transmission line models discussed
in the previous section. Lin, Uman and Standler (Reference 4-6) have defined
a fairly complex current distribution. The channel current is decomposed into
three components (continuing current, breakdown current and corona current)
each dominating a separate time period and having a physically reasonable
basis. The continuing or leader current is constant in time and elevation and
turns on when the return stroke initiation begins. The breakdown pulse
propagates up the channel with a velocity imposed that 1{s based on
experimental values. The corona current is caused by the radially inward and
then downward movement of the charge stored in the corona. It is fnitiated at
each height as the breakdown pulse front moves by. The current profiles used
are shown in Figure 4.2. The fit to near and far field data is quite good in
that both close and distant electric and magnetic fields are matched. Two
examples are given in Figure 4.3.

Lin et al compares the peak current from the subsequent stroke to
measurements. Their mean value of 23 kA s reasonable and agrees with recent
results published by Garbagnati (Reference 4-10). No comparison is avaiiable
with rise time, however, which is one of the most important parameters that

the threat model will have to predict.
73
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Major limitaticns of this model include (1) non-uniqueness of the current
decomposition, (2) artificially imposed corona current which leads to imposing
velocity of propagation as an input parameter to the model, (3) fixed height
dependences built in the model and not determined by the physics.

The non-uniqueness of the current decomposition from the EM field values leads
to a range of possible current rise rates and maximum amplitude values. This
range of values is due to the many parameters introduced in the model and is
not yet quantified.

The model assumption of a constant value of velocity of current pulse
propagation up the channel also leads to uncertainty in the prediction of
current parameters. The velocity values picked to use in the model are
averages of experimental observations but the observations themselves show a
wide range of values. Also, the height variation of the propagation velocity
is not included which leads to further uncertainties.

The artificial height dependences included in the model must be verified by
correlation with experimental data or the predictions can not be used for
extrapolation purposes to aircraft altitudes.

4.3 BASIC PHYSICS MODELS

4,3.1 Strawe

Strawe {Reference 4-2) has developed a transmission 1line model of a
cloud-to-ground return stroke in which the non-linear breakdown physics is
included. Consistent channel and line parameters are determined from the past
current time history using a shock wave (Braginskii type) model of the channel
arc. The model determines peak currents, decay times, and scale heights
(lengths) similar to linear models. It also provides current rise times and
rise rates well in accord with measured data. It indicates that the velocity
of propagation of the current wave declines with elevation, as observed
photographically, even when the 1ine model is initially uniform in temperature
and channel diameter. Most importantly, it predicts a substantial decline in
current rise rate with elevation or distance from the discharge initiation.
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The actual current and the channel arc interact in a lightning discharge to a
high degree especially in the early phase when both the current and arc plasma
are building. A self consistent model is needed to describe the buildup phase
which determines such important current parameters as maximum rate of rise (or
rise time) and propagation velocity. Detailed numerical studies (Brode,
Reference 4-11; Plooster, Reference 4-12, 4-13; Hi11, Reference 4-14) of arc
development have been carried out in cylindrical symmetry for assumed current
time histories. These analyses have established the time and spatial
development of the related plasma parameters, i.e., temperature, pressure,
particle densities, conductivity, arc radius, etc., for specified currents but
not for natural se)€ consistent ones.

Close agreement between the step excited currents on vertical conducting wires
over conducting ground and those on a transmission line has been established
(Reference 4-15). This forms a justification for the use of the economical
and traditional 1ine model of the return stroke.

In Strawe's model it is assumed that the branched structure of the charged
cloud-to-ground 1leader system can be represented for channel current
calculations as a network of transmission line segments. The current so
obtained can be used with an assumed channel geometry to calculate the
resultant electromagnetic fields.

In the models solved to date only the equivalent line resistance per unit
length (R) is considered non-linear and time varying. In principle, since the
channel radius changes significantly with time and the channel is
geometrically more nearly a vertical monopole than a 1linear transmission
1ine. The inductance (L) and capacitance (C) per unit length should also be
time functions. These involve 1logarithms of time varying terms ana are
themselves weak time functions. Initially these time dependences are not
included. The channel tortuosity (random path bending) and corona sheath
charge storage effects are included as modifications to the L and C values or
equivalently as modification to the hot channel (R = 0) velocity factor (Vf)
and characteristic impedance (Zo). Some of the charge stored in the sheath
during leader formation is retrievable during the return stroke. This is
accounted for by assuming a larger effective conductor radius for capacitance
calculation than the sub-centimeter current carrying core.

15
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The resistance models developed for use here are based on the spark channel
model of Braginskii (Reference 4-16). This relatively simple model assumes
that a conductng channel has been established prior to the initiation of the
spark by prebreakdown streamer, and/or leader processes. The resultant arc
radius, temperature, pressure, etc. are determined from the spark current time
history. The current (i) is assumed to heat (12R loss) the 1initially
conducting arc plasma to higher temperatures and tens of atmospheres of
pressure. This condition produces a hydrodynamic shock wave in the air
surrounding the spark channel resulting in a rapid channel expansion.
Braginskii uses the strong shock approximation to simplify the physical
picture of the expansion process. This picture produces an essentially
uniform electrical conductivity (determined from channel temperature and
pressure) which is nearly constant in time. The channel resistance per unit
length is determined from the conductivity and the arc radius.

The arc channel geometry is assumed to be axisymmetric or Tlocally of
cylindrical symmetry. The channel parameters are described in terms of a
deposited energy rate set by the local current time history (iZR loss).
Detailed analyses (References 4-11 to 4-14) have established representative
radial contours of these parameters for 1lightning-like currents. These
analyses solve, 1in cylindrical symmetry, the hydrodynamic equations of
continuity of mass, momentum, and energy (transfer) together with two
equations or state relating pressure, temperature, mass density, internal
energy density, etc. The model was developed to include the lost and
reabsorbed thermal radiation from the channel, temporal variation of thermal
and electrical conductivity, and low pressure momentum transfer.

In comparison with Uman's EM field current fitting model, the currents
components included in Strawe's model are Uman's breakdown current and corona
current. To date, the continuing current component is not yet incorporated.
This addition would make the 1late time field values agree more with
experimental measurements.

Representative model current time histories are shown in Figure 4.4. The most
significant effect shown, from an electrical transient point of view, is the
rapid reduction in peak current rise rates with elevation or distance from the
X discharge initiation point. As expected, the peak amplitude declines slowly

and the rise time i{ncreases with elevation.
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Comparisons of Strawe's model with results given by Plooster (Reference 4-12,
Figure 3) on temperature within the core agree well both in magnitude and
N trend with radius. The results also agree with experimental results on core

4

temperatures given by Orville (see Reference 4-14). Preliminary comparisons
- of the height dependence of the velocity of propagation up the channel agree
in trend with some of Orville's luminosity measurements. Agreement with
previous results for both spark modelling and experimental results indicates
Strawe's model has incorporated most of the important physics known to date.

4.3.2 Gardner
y Gardner (Reference 4-3) uses a nonlinear transmission line model of the return
e stroke channel. It fs similar in structure, physics, and mathematical form to
) that of Strawe except for reduced channel complexity (one dimensional: no
branching, bending or network representations of ground connections, etc.) and
a more detailed radial treatment of arc development. He uses constant (time
- and position) L and C line parameters, although this could be generalized to
‘i include dependence on local arc and positive corona radii as well as local
current time history. The only time varying parameter is the arc channel
r resistance per unit length R (2, t), as in Strawe's model.

Like Strawe's model the only source of energy input to the arc channel is
Joule heating (12R) due to the channel current. The model represents an
extension of the Strawe model in that the 3 region (Braginskii shock model)
radial description is replaced by a radia' grid of 256 bins allowing for
shockwave buildup and decline with a minimum of geometrical restriction or
approximation. The 3 region Braginskii radial distribution is a good
approximation for early arc channel development. Gardner's approach should be
capable of calibrating and improving upon it especially for late time arc
development.
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Gardner's solution dinvolves the simultaneous solution of the nonlinear
telegrapher's equation set describing current propagation on the conducting
channel and the nonlinear hydrodynamic equations describing the local pressure
p, temperature T, arc radius a, arc conductivity o, and ultimately R (z, t)
in terms of the local current time history. These are nonlinear partial
differential equations requiring numerical solution. Initial conditions
involve the values at discharge commencement of leader channel voltage, arc
channel radius, temperature, and pressure. The i{nitial current (normally
o zero) is also required. 17
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Instead of Braginskii's simple equation of state, Gardner uses a more complex
set developed by Plooster (Reference 4-13). These equations include more
physics and chemistry than does the Braginskii model, although Strawe does
include some of the more complex physics by using some curve fits to
Plooster's model.

Comparisons of Gardner's results to both Strawe and Plooster agree well in
magnitude and radial variation for early times (arc radii < few cm). Shock
radii, temperatures and conductivities agree between Gardner and Strawe for
early time development of the arc. The later time development does not agree
due to different assumptions made in the two models. Gardner's shows the
channel developing more slowly with an expanding shock wave propagating away
from the channel. Strawe's model continues to have the channel radius defined
by the shock radius which for later times implies a rapidly expanding radius.

These comparisons show both Gardner and Strawe to have correct physics for the
initial arc development. Strawe's results are good for arc radii out to
several centimeters while Gardner's results should be good beyond that.
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X |
e 5.0 STATIC ELECTRIFICATION |
3: Static electrification of a conventional aircraft can occur in various ways as
' illustrated in Figure 5.1. Figure 5.1(a) illustrates frictional
I: ' electrification; as uncharged precipitation particles strike the aircraft,
! they acquire a positive charge, leaving an equal and opposite negative charge
‘t\ on the aircraft and raising its potential to tens or hundred of thousands of
:‘S volts. Charging occurs both on the metal structure of the aircraft and on
::3 dielectric surfaces such as the windshield. Dielectric surfaces can thus
y become charged with respect to the airframe. Engine charging, illustrated in
5 Figure 5.1(b), occurs when flight vehicles are operated at low altitudes.
le Processes as yc 1incompletely understood occur within the engine combustion
. chamber and cause a predominantly positive charge to be expelled with the
b engine exhaust. This causes an equal and opposite (negative) charge to be
imparted to the aircraft charging it to potentials of tens or hundreds of
thousands of volts. Exogenous charging, i1llustrated in Figure 5.1(c), occurs
when the vehicle flies in a region of electric field, such as that generated
between oppositely charged regions of clouds; this field can cause discharges
to occur from the extremities of the vehicle.
3
::j _The operational conditions under which static electrification can occur depend
s somewhat on the class of vehicle. Since airplanes encounter severe charging
,. during operation in clouds in horizontal flight, electrification can continue
for considerable periods of time on all-weather missions. On jet aircraft
operating at iow altitude, engine charging can be an additional source of
f‘ long-term electrification. Helicopters become charged while flying through
naturally occurring clouds. In addition, a hovering helicopter can stir up
i snow or dust thereby generating its own cloud of particles to produce
:3513 frictional electrification. Thus, helicopters encounter static problems in
' N regions where conventional aircraft do not.
\ The charging process itself produces virtually no difficulty, but vehicle
X voltage and electric fields can become so high after a period of time that
AN electrical discharges occur. It is the discharge of the accumulated static
~‘ electricity that generally produces the most harmful effects.
:E:
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5.1 NOISE SOURCES

An important consequence of static electrification is electrical noise. The
various noise mechanisms that have been identified are shown in Figure 5.2.
As the airplane becomes charged, the electric fields at the extremities of the
vehicle become sufficiently high to cause corona breakdown of the air. At the
operating altitude of airplanes, this breakdown occurs as a series of very
short pulses containing energy in the radio frequency spectrum. These noise
pulses can couple into communication, navigation, or digital circuitry to
produce interference.

Another source of noise occurs when dielectric surfaces on the front of the
airplane, such as the windshield and radome, are exposed to frictional
charging, as {1llustrated in Figure 5.2. These surfaces can be charged by
impinging particles. Since these materfals are insulators, the charge is
bound at the place where it was deposited and cannot be discharged until
sufficient electric charge has accumulated to produce a streamer (a spark-like
discharge) across the dielectric surface to the metal airframe. Streamer
discharges are slow in duration, and involve the transport of charge over a
large distance. They therefore produce radio frequency interference which can
couple into susceptible systems on the aircraft. In some cases, the
streamering on a square inch of surface in a critical location is sufficient
to disable systems.

A third source of interference that often occurs inadvertently on airplanes is
associated with sparking between unbonded adjacent metal sections of the
aircraft. For example, consider Figure 5.2, which shows a break in the wing;
charging processes on the airframe will raise the potentfal of the inboard
section with respect to the outboard section until a spark occurs in the gap.
This spark produces a short current pulse, which is also a source of noise.
In flight, the current required for corona discharge from the jsolated wing
tip is supplied from the remainder of the airplane.

Finally, slowly varying induction pulses can be produced in antennas by the
passage of charged particles. This noise is of importance only at VLF or ELF
and does not pose much of a problem to conventional communication and
navigation equipment. With the advent of systems operating at frequencies of
the order of 10 kHz, however, induction nojse should be considered.
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5.2 CHARGING PARAMETERS

The interference problem due to any of these noise sources depends on the
charging rate of the plane. The most important process as measured in flight
tests is frictional charging. Examples of both frictional and engine charging
are shown in Figure 5.3 (Reference 5-1).

The precipitation charging current to a vehicle is given by (Reference 5-2)

i= qp cv Aeff 3
where

qp = Charge per particle

« = Particle concentration

v = Aircraft velocity

Abff = Effective intercepting area of aircraft.

The various parameters in the equation and their interdependencies have been
studied analytically, in the laboratory and in flight, and are generally
understood for the operating regimes of current aircraft. Typical values of
particle parameters for an aircraft operating in the subsonic flight regime

are given in Table 5.4 for two cloud types.

Table 5.4 Precipitation Particle Parameters (Reference 5-3)

9, c

Cloud Type pico Coulomb ms
Cirrus 1-10 2 x 10%
Thunderstorm Anvil 1 -35 5 x 104

Laboratory experiments involving the charging of projectiles fired through ice
crystal clouds were conducted to determine the relationship between the charge
acquired and the impact velocity. The results of these experiments indicate
that the projectile charge decreases with increasing velocity as shown in
Figure 5.4 (Reference 5-4). These results were further verified by flight
tests. It was noted that the observed effect night be caused by the melting i
] of the ice crystais by the energy of the impact, since flight-test experience
indicates that clouds composed of water droplets tend to charge an aircraft at |

89

—prs e o
s Y2l :,\:'!.l el

P PE AR CAN R O et
< P I S L L L



A

)}F

PR

oS

l"'._ /

e o
LR e oo

P

a much lower rate than do clouds containing ice crystals. Thus, if an ice
crystal is completely melted upon impact, greatly reduced charging would
result. Thus, the charging should follow value of the unmelted ice mass as it
does in Figure 5.4.

The effective intercepting area, Aeff' as been found to be affected by
afrcraft speed as well as body shape. The results of studies of water droplet
impingement on airfoils indicate that the effective intercepting area of a
typical afircraft would vary with speed as shown in Figure 5.5 (Reference
5-2). Combining the results of Figures 5.4 and 5.5 yfelds the curve of Figure
5.6 (Reference 5-2) which indicates the predicted charging current behavior as
a function of speed. It is noted that because of ice-crystal meiting, the
charging rate decreases rapidly at speeds above 1500 mph. The maximum
charging current occurs at about 1400 mph and {s only 2.6 times the charging
current at 600 mph. This result is highly significant in that it indicates
that precipitation static problems on highly supersonic aircraft are not
appreciably more severe than they are on subsonic aircraft.

5.3 CORONA

As the static charging increases, the electric potential of regions of the
aircraft can be increased to the point that corona discharge take place.
These discharges are in the form of a series of short pulses. The individual
pulses associated with these discharges can be modeled as (Reference 5-4)

f(t) = Aet | (&
where A is the pulse amplitude and o is the pulse decay constant. Both A
and a are functions of atmospheric pressure, and hence of altitude. The
number of such pulses per minute, denoted by v, 1s also a function of
atmospheric pressure. A good fit to observed values of A, « and v can be
obtained by using:

A = 7.90569 x 10° p0+25

«= 27772102 p (5)

v = 3.83767 x 10° p0-48

where p is atmospheric pressure, measured in torrs.
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Pressure and altitude can be related by

2
P = 760 exp - (L2002 h, (6)

where h is altitude given in kilofeet and p is again in torrs. The noise

spectrum produced by v pulses per second is given by (Reference 5-4)

Figure 5.7 (Reference 5-5) shows some characteristics of this spectrum.

Note that the low frequencies are a larger threat for high altitudes. This
trend with altitude changes for higher frequencies. Above about 10 MHz,
higher noise le\ :1s are present for lower altitudes.

5.4 STREAMERS

When charge is deposited on dielectric surfaces such as radomes, windshields
or composite material structures, it cannot flow freely to other parts of the
aircraft because of the i{nsulating character of these surfaces. If the
potential between these surfaces and the main body of the aircraft becomes too
great, a surface streamer discharge will occur.

The current flow from a single pulse of a streamer discharge can be
approximated by (Reference 5-4)
) = 1., (aet + pe BY)

(8)
where, for a typical streamer, .

a =0.597 « = 1.67 x 107 Hz
b = 0.403 8 = 3.47 x 10° Hz
Inax = 0-01 A

Clearly, this current is many orders of magnitude smaller than that due to
1ightning.

This waveform has been used with a typical coupling factor of ¢ = 3 m'1
for several streamer lengths to compute the induced current with a wire
located immediately below the streamer. The results of these calculations are
shown in Figure 5.8 (Reference 5-3).
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The charge transferred by a single streamer discharge is 1 to 1.5 x 10'9

Coulomb. This is roughly the same as the charge transfer in a corona pulse.
The difference in pulseforms produced by the two mechanisms results from the
difference in the lengths of the two discharges. The corona discharge extends
to only one tip radius from the burr or other imperfection from which it
occurs. A streamer on the other hand extends many inches out on to the
dielectric. This long discharge length causes the streamer to contain
substantial low frequency energy.

Streamer noise spectra are given in Figure 5.9 (Reference 5-5) and a function
of sample area. The noise spectra is proportional to area since the total
charge stored and thus the discharge current {s proportional to area.

5.5 COUPLING OF NOISE TO AIRCRAFT SYSTEMS

In general, noise sources on an aircraft are located i{n one place, and the
affected antenna or system are located somewhere else. To calculate the
interference to a system by a noise source, it is necessary to define the
coupling between the source and problem system. Measurements have been made,
for example, for a Boeing 707 and a helicopter. Using the measured coupling
values, noise source spectra can be calculated and measured. Examples are
shown in Figure 5.10 (Reference 5-3) for given source current levels. Note
that both coronal and streamer noise levels are much 1larger than either
daytiome or nighttime atmospheric noise levels. Note also that for the
helicopter spectra, the low frequency streamer noise is a factor of two higher
than the coronal noise.
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6.0 PARAMETRIC THREAT LEVELS

The threat levels presented to aircraft by both lightning and static
electricity are presented here. The lightning threat levels are presented for
both attached and nearby strokes from statistical ground based current
measurements. Static electricity threat levels include corona and streamer
time waveforms and frequency spectra. The threat variation with altitude,
velocity, etc. is also presented.

6.1 LIGHTNING

Lightning may be a single or multiple stroke event either cloud to cloud or
cloud to ground. Cloud to ground statistics are used to parameterize the
ground 1ightning “hreat. Multiple stroke threat characteristics are shown in
Figure 6.1. The number of strokes and the total length of an event determines
how Tong a system may be inoperable. The magnitude of the strokes determine
whether a system can recover.

Current measurements on single strokes were accumulated by Berger (Reference
6-1) and Garbagnati (Reference 6-2). Statistical results are shown in Tables
6.1 and 6.2. The results show mean values (50%) and upper and lower 1% levels
for all parameters listed. The results are almost identical. Both results
were obtained on nearby mountain tops so the correlation is a good check on
the consistency of the measurements. Debate about whether this data
represents “"typical” 1ightning is still ongoing.

TABLE 6.1
BERGER (NEGATIVE STROKES)
99% 50% 1%
MAXIMUM RISE RATE 8 40 200
(KA/us)
MAXIMUM AMPLITUDE 9 30 120
(KA)
RISE TIME 0.11 1.1 9
(us)
FALL TIME TO HALF PEAK 20 80 300
(us)
ACTION INTEGRAL 2.2 x 103 6 x 104 1.5 x 106
(A2-S)
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TABLE 6.2
GARBAGNATI (NEGATIVE STROKES)

99% 50% 1%

MAXIMUM RISE RATE 6 40 220
(kA/us)

MAXIMUM AMPLITUDE 9 22 120
{(kA)

RISE TIME 0.13 1.2 7
(us)

FALL TIME TO HALF PEAX 20 95 300
(ps)

AcT}o n;rssm. 2.4 x 103 6 x 104 1.5 x 106
Ac-S

To obtain statistical bounds on the frequency spectra from this data, a double
exponential waveform was fit to Berger's 1%, 50%, 99% levels. The fit was
made to match maximum rise rate, maximum amplitude and action integrals. The
parameters chosen and the resulting values for the remaining parameters (rise
time and fall time) are shown in Table 6.3. The resulting current waveforms
are plotted in Figure 6.2. The associated spectra are shown in Figure 6.3.
Both the current levels for a direct attached 1ightning stroke and the
associated magnetic field values are given. The threat of nearby 1{ightning
strokes comes from the EM fields. The magnetic field threat level for a
nearby stroke (range = 50m) is shown in Figure 6.4 for the same waveforms
given in Figure 6.2.
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TABLE 6.3

DOUBLE EXPONENTIAL FIT TO BERGER'S (1975) STATISTICS

LOWER 50% UPPER
PARAMETERS 99% MEAN 1%
a (sec-1) 2.3 x 104 7.9 x 103 5.2 x 103
8 (secl) 8 x 105 1.3 x 106 1.6 x 106
MAXIMUM RISE RATE 8. 40. 200.
(kA/us)
MAXIMUM AMPLITUDE 9. 30. 122.
(kA)
ACTION INTEGRAL 2.2 x 103 6 x 104 1.5 x 106
(Aé-s)
RISE TIME 4.4 3.9 3.6
(us)
FAL}. T)IME TO HALF PEAK 37. 90. 140.
us

The parametric range of the cloud to ground lightning threat is established by
Figures 6.3 and 6.4. These give the statistical range of expected values
between upper and lower 1% values and the mean values for both attached and
nearby 1ightning.

6.2 STATIC ELECTRIFICATION

The parametric variation of corona and streamer noise threat levels depends on
a wide range of variables. The threat levels depend on charging rates which in
turn depend on surface area exposed on an aircraft, speed, altitude, and
weather conditions. The exposure of an aircraft to this type of threat
depends on the specific aircraft and its mission profile. Each aircraft's
threat level will be different (References 6-3, 6-4).

Coronal threat levels are established by modeling individual pulses in a
string of pulse discharges to obtain a noise spectrum normalized to charging
rate (Figure 6.5) as a function of altitude (Reference 6-5).

Streamer threat levels depend on dielectric surface area over which charge is
stored. Noise threat levels are presented as of function of surface area in
Figure 6.6 (Reference 6-5).
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= 7.0 METEROLOGICAL PHENOMENON
ég Operating an aircraft in all kind of weather exposes it to atmospheric
?ﬁ electricity (AE) threats. Probability of aircraft exposure to AE threats must
i be calculated for various segments of a mission (e.g. climb, cruise,
“ descent). The probability of exposure coupled with the probabi¥lity of the
DY severity of exposure determine the protection level necessary for individual
i] vehicles. .
o Probability of a 1lightning strike to an aircraft is dependent on many
-ﬁ; variables. Included are such items as geographic, monthly, daily and height
f% variations in the lightning flash density per area per unit of time. Also
Ko important is the aircraft's effective cross section in attracting lightning
,; strikes. The probability of a strike can be calculated by using the type of
;? formula as follows
o
[
EF Ps = (F) (N) (Aa) (f diurnal) (f month) (f altitude) (f geographic) (9
{% PS = lightning strike probability per hour of flight time
1 F = 1ightning flash rate density (f1ashes/hr/km2)
o N = Number of strokes per flash
:3 A = effective cross section of aircraft in attracting lightning (kmz)
Z§ f month = monthly dependence of flash rate
-? f diurnal = daily dependence
5 - i s
2 : altitude i1t1tude :?r1a:lont
:ﬁ geographic - geographic effect.
:;; Each factor determining PS will be discussed separately in the sections
i below,
%% ’
qzﬁ 7.1 LIGHTNING FLASH RATE DENSITY

The historically and internationally accepted parameter of Tightning incidence
is the thunderstorm day (i.e. a day on which thunder is heard at a recording .
station) (Reference 7.1). Isobront maps (e.g. Figure 7.1) show areas of
differing levels of thunderstorm incidence. Generally the highest incidence
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- of thunderstorms is near the equator and lowest near the pole. However,

oy Figure 7.1 of the United States shows that large regional variations exist.

'E Limitations of thunderstorm day data are that neither storm duration or

':I severity is taken into account. These factors influence the flash rate which

. is the parameter of principle interest in any threat scenario. Information on

[+ the frequency of 1lightning flash occurrence only exists in regions where

% thunderstorm research programs exist. Relating discharge frequency to

? thunderstorm days has been done for various regions. Results are given in

- Table 7.1.

K-

R Examples of ground flash rate densities are given in Tables 7.2-4 for various

;3 measurement tifhniques. The highest density rate from any of these tables is

b 12 flashes/km“/yr seen in Table 7.3 in Singapore and in Table 7.4 in the

i U.S. Recently, Maier and Piotrowitz (Reference 7.2) report maximum annual

E ground flash densities of 18 ﬂashes/km2 in western Florida. Other regions
of the U.S. were reported to have smaller flash rate densities.
Cloud flash incidence must also be quantified., Cloud flashes are generally
harder to see visually or photographically. Also, a large number of flashes
cannot be classified as cloud or cloud-to-ground from visual observations.
Table 7.5 shows various measurements of cloud to cloud-to-ground flashes (last

. column), The data ranges from 0.9 to 9.5. The scatter is due largely, to the

[ problems cited above. Prentice and Mackerras (Ref. 7.3) have developed rough

5 mean values for various latitude ranges taken from twenty-nine sources. Table

é 7.6 shows the calculated values.

s TABLE 7.6

)

i: Latitude Range Average ratio of cloud to

. c¢loud-to-ground flashes

= 2°-19° 5.7

X 21°-37° 3.6

43°-50° 2.9

- 52°-69° 1.8

o

2; The values have a wide scatter and are from relatively few measurement

L.
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stations. More recent data from the National Severe Storm Laboratory in
Oklahoma (Reference 7.9) has shown ratios as high as 40:1 for cloud vs
¢ loud-to-ground. Additional data on relative occurence of cloud to
cloud-to-ground flashes is needed to more accurately define this ratio.

Each flash is made up of a number of strokes which occur very close together
in time. For cloud-to-ground flashes, interstroke time intervals range from
10 to 100 ms (Reference 7.4)., Cloud flashes can have much shorter interstroke
time intevals of 0.1 to 1.0 ms. Thomson (Reference 7.4) has statistically
analyzed ground flashes from a large number of workers worldwide. The maximum
number of strokes per ground flash is about 4.2 at the 50% level and up to 16
strokes/flash at the upper 1% level. This is compared to an upper flash rate
for cloud events seen on aircraft of 103 strokes/flash (Reference 7.5) and
10% strokes/flash (Reference 7.6).
7.2 MONTHLY VARIATION

Variation of monthly 1lightning activity is dependent on latitude, In
temperate climates, the maximum occurs in mid-summer with some activity
occasionally in mid-winter (Reference 7.1). In subtropical thunderstorms,
large activity is seen only in summer., Large summer activity is seen in Table
7.6 of data taken at Kennedy Space Center in Florida and in Table 7.7 from
Brisbane, Australia. In the tropics several patterns have been observed, non
consistent. Since large variations in lightning incidence exist year to year,
long term averages of these parameters must be developed to obtain reliable
statistics on risk factors,

7.3 DIURNAL CHANGES

Diurnal variations in lightning flashes are fairly well established. The
maximum flashing rate occurs in the late afternoon and evening with a minimum
about 10 hours earlier. The peak hours of activity and amplitude of variation
vary with location and month. Examples taken from Reference 7.7 are shown in
Figure 7.3. A ten year study in Brisbane by Mackerras (Ref. 7.8) concluded a
maximum activity ocurred between 1900 and 2000 hours with the hours earlier in
the winter and later in the summer,
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7.4 ALTITUDE STATISTICS

Aircraft lightning strike incidents plotted as a functions of aititude were
published in 1977 (Ref 7-9). The strike rate plotted in Figure 7.4 for
routine aircraft operations show a peak rate near 3-4 km altitude. This was
the only data available until recently.

During the 1last several years research from the National Severe Storms
Laboratory (Reference 7.10) has shown two centers of lightning activity from
VHF studies of thunderstorms that are separated in altitude. The lower
maximum is about 5 km in altitude which agrees with the previous data while
the upper center is about 12 km. Altitude distributions for one set of storms
is shown in Figure 7.,5. Major flashes are defined in this study as those with
greater than 30 VHF signals at each station. All minor flashes (those with
less than 30 VHF signals) were thought to be cloud flashes.

The upper altitude maximum of 1lightning activity is consistent with the
findings of NASA's F106-B flight program (Reference 7.11). Flying at lower
altitudes resulted in few direct strikes to the aircraft. Strikes were only
obtained by flying higher, from 8 to 12 km with a maximum number of strikes
per thunderstorm penetration at 11 km seen in Figure 7.6.

The reason behind NASA's difficulty in getting struck at lower altitudes while
being hit often higher up is not well understood. Une strong possibility is
that at lower altitudes the aircraft must be near developing leaders or run
into a developed channel., At upper altitudes the aircraft may be closer to
the charge centers in the clouds and actually trigger a direct lightaing
strike.

7.5 GEOGRAPHIC EFFECTS

Lightning flash rates have been observed to vary greatly between various
regions of the world. An example of the great variation in thunderstorm days
across the U.S. is seen in Figure 7.1, High frequencies of thunderstorms are
seen in Florida and in Wyoming and Colorado. Low incidence rate is seen on
the west coast, for example. Worldwide, the trend is generally a decrease in
thunderstorm activity away from the equator.
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Attempts have been made to correlate lightnings flash rate parameters with
o latitude. Pierce {(Reference 7.12) has represented the latitudinal variation
of the proportion of discharges that go to ground (p) as

2

P = ﬁa = 0.1 [1 + (x/30)°] (10) |
‘gz c
.\‘
;E: Where Ng = number of discharges to ground, Nc = number of cloud
K discharges. More recently Prentice and Mackerras (Ref 7.3) have developed the
- following empirical relation from data from 13 countries.
\ | N = 411+ 2,11 COS 3 (0<A<60°) (1)

g
=

e g

& b Thomson (Ref 7.4) has recently studied interstroke time intervals and the
las number of strokes per flash to discover any systematic latitudinal
;;* variations. His conclusions were that only interstrokes times showed any
e latitude dependencies but only at tropical latitudes.

2

HEQ Generally the regional variations in thunderstorm severity seem to be much
3 } more evident than global trends, at least for thunderstorm parameters measured
- to date.

-

o 7.6 OTHER PARAMETERS

Ia

] The problem of aircraft avoiding lightning is dependent on the knowledge of
f i all variables that correlate with lightning activity. Not all of these
:? parameters are known. Studies by the NASA F1068 and NSSL show much more needs
ig to be understood to predict lightning strikes to aircraft. NASA's experience R
o with the F1068B showed that the highest strike rate occurred for temperatures
;;j of -40° to -50°C as seen in Figure 7.6 (Ref 7.11)., They also occurred .
Cij near 11 km in altitude (Figure 7.7). Strikes tended to occur for all
&Eﬁ turbulence and precipitation intensities but generally more strikes were seen
; in low turbulence and low precipitation areas (see Figure 7.8).
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NSSL in coordination witn une WNADA FIUb aiso compilied parameters rejatea to
direct strikes using the UHF radar at Wallops Island (Reference 7.13)., Their
data also showed high correlation of direct strikes to the F106 at low
temperatures (-40°C or less) (Figure 7.9), low turbulence levels (Figure
710), some correlation to 1light precipitation (Figure 7.11), and to low
lightning flash rates (Figure 7.12). This last correlation is very
unexpected. The reason for low numbers of direct hits with high flash rates
nearby is unknown, Speculation is that it is related somehow to the
triggering mechanism of cloud-aircraft lightning.

Other parameters may also be important in studying direct strikes to
aircraft. One parameter not mentioned yet is aircraft size, shape and
material. The effects of these parameters is not known. A volume effect is
suspected i.e. larger aircraft are assumed to "“attract" lightning from a
larger volume of space. Shape factors may assume a role in triggered
lightning. Certainly attachment points are effected by shape. Material
effects are also unknown. Tests by Grumman (Ref 7-14) and McDonnell Douglas
(Ref 7-15) on graphite composite have shown little difference in attachment
points relative to aluminum. However, the effect on lightning strikes is
unknown,

Our knowledge of the mechanism of lightning occurring within storm systems is
still in its infancy and must progress much further before we can be
reasonably certain of all the parameters effecting direct strikes to aircraft,

7.7 STRIKE PROBABILITY TO AIRCRAFT

The probability of lightning striking an aircraft depends on the type of
aircraft and its mission profile. For example, a fighter may climb quickly to
high altitudes, cruise for several hundred miles, then descend to low altitude
near its destination. The total strike probability is governed by the time
the aircraft spends at different altitydes and weather conditions. The ‘
probability is also effected by the aircraft size, the time of year at wnich

the aircraft is flying, the time of day and the regional area through which it

is moving, These parameters were discussed in sections 7.2-6.
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The total probability of a strike to an aircraft can be calculated from the
following equation:

P Total = Zp] t'l (12)
I
Lt;
i
where P Total = total probability of direct strike

Pi = probability of strike under different conditions
(weather, region, time of day etc.)

ti = time spent under above conditions

Considering only altitude variations, the aircraft is considered under the
cloud-to-ground 1lightning threat below 20,000 feet and under the cloud
Tightning threat above that level. Therefore, equation 12 becomes simply

P Total = P€-9 tygw * PC-C thign (13)
s
tlow + “high
where Pc-g = probability of cloud-to-ground 1i§htning strike

Pc-c = probability of cloud-to-ground lightning strike
tyow = time spent at low altitud: (<20,000 ft)
thigh = time spent at high altitude (>2000 ft)

Missiles and helecopters spend all their time at low altitude and so are only
effected by cloud-to-ground lightning., Fighters and transports which spend
most of their time at high altitude are effected mostly by cloud-to-cloud
lightning. This is reinterated in Table 7.9.

TABLE 7.9

Approximate Strike Probability

Fighter Missile Transport Helicopter
Pc-c Pc-g Pc-C Pc-g
120
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Note that Pc-g and Pc-c are assumed to include all the factors listed in
equation 9 , i.e statistics on the type of lightning, aircraft size, monthly,
daily, altitude and geographic dependences for that specific type of lightning.
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This document provides definition of the AEHP program threat environment. The
threat document will be revised periodically to provide the "best" current
definition of AEH threats. This issue summarizes the initial atmospheric
electricity threat to be used for the AEHP program. The experimental basis
for this threat was critically reviewed. Comparisons with measured
statistical data were made as well an assessment of the validity of the data.
Comments on on-going lightning data collection programs are made. This data
will impact the final threat definition. The initial AEH threat definition is
needed to support the Phase I environmental impact tests. A final AEH threat
definition will arise out of additional studies of existing data as well as
new data as it becomes available.

The topics included in this document are definition and review of lightning
data sources, data comparison with the initial lightning threat parameters,
1ightning model review and discussion, static electrification threat levels,
parametric threat levels of both 1lightning and static electricity, and
comparison of 1lightning with NEMP and EMI threats. A discussion on
meterological environment effects will be added in the next issue.

8,1 CONCLUSIONS

The {nitial definition of the AEHP 1lightning <threat 1is compared to
ground-based direct current tower measurements. The validity of the measured
data was critically reviewed. To refine the ground lightning threat, the
avaflable statistical data sets {including Berger, Garbagnati, Uman, Eriksson,
Cianos and Pierce and Popalansky) must be critically assessed and
quantitatively as to accuracy and experimental limitations. The earlier data
(Cianos and Pierce and Popalansky) do not reflect the fast rise times recently
measured and thus the data base is biased toward longer rise times. Both the
tower current data and the 1lightning current values derived from field

i‘ measurements are subject to uncertainties. These uncertainties need to be
iiﬁ quantitatively assessed for use in an updated current threat level.

~ '_‘

20

;12 The static electrification threat is based on published measurements of
-~ streamer and corona noise. Static electrification threat levels may change in
% the future as new avionic/electronic technology (fly-by-wire) and materials
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(graphite/epoxy, Kevlar, etc.) are used in newer ajrcraft. Charging rates and
locations of corona and streamers may change as well as the coupling to
aircraft systems. As advanced technology aircraft are designed, static
electrification threat levels may have to be updated.

The conclusions reached to date in defining an appropriate atmospheric
electricity threat are:

1'

Present 1ightning threat is based on currently available industry draft
standards and Boeing interpretation of newer high rate of rise data.
Static electrification is defined from prior measurements of corona and
streamer noise.

Newer measurements of 1ightning current trends toward higher current rise
rates. Reinterpretation of older tower data, newer instrumentation and
derivation current parameters from field measurements generally point to

faster current rise times and higher current rise rates.

Airborne data indicates 1ightning current amplitudes smaller than ground
based measurements but rates of rise may be the same.

Technical problems arise in assessing o1d and new 1ightning measurements:

a. Experimental 1imitations difficult to quantify from published results.

b. Sample size of data from each experimenter is too small for a
reasonable statistical confidence level.

¢c. Data 1s often not presented in form to correlate 1ightning parameters
of interest (e.g. amplitude vs. rate of rise).

d. Tower measurements may underestimate current rise rates due to
impedance and leader effects.




e
o

. e. Current parameters derived from field measurements are subject to a
R variety of uncertainties. Velocity of propagation assumed can
introduce large uncertainty. A factor of two may also arise from
assuming the stroke initites at the ground and propagates upward.

8.2  RECOMMENDATIONS

e The atmospheric electricity threat directly affects aircraft protection. o
55 Uncertainty in the threat level imposes a penalty factor for all future
‘ES technology atrcraft. New materials (graphite composite, Kevlar, etc),
R fly-by-wire flight control and increased systems integration introduce new
. requirements for protection. An accurate atmospheric threat level imposes the
'%3 least overprotect’-n requirements with consequent lower cost and weight
 }\ ' penalties. The present uncertainty in the atmospheric electricity threat is
R4 estimated to be within a factor of two from the present AEH threat
;:J definition. The only way to increase the accuracy of the threat is by
if; obtaining more data. This objective can be accomplished in the following ways:
15

iff 1. Airborne data collection. This is the most critical need for defining an
o airborne threat level. Flight tests should be continued to establish a
yﬁ% future data base. This method is expensive and will not yield a large
‘Eﬁ enough volume of data for many years. The immediate benefit would be
3% better understanding of the {interaction between naturally occurring

’ 11ghtning and aircraft in flight.

‘f@ 2. Ground strike current measurements. Continuation of studies similar to
yy , Berger, Garbagnati and Eriksson on towers. The towers need calibration to
;; establish effects of the tower inductance and local ground impedance on
;S the lightning current waveforms. Geographical effects on lightning could
: be established by a network of <towers. Rocket triggered 1ightning
i; experiments offer the advantage of near certain strikes. ‘
E?; 3. Simultaneous measurements. This would allow correlation of fields, visual .
:ﬁj pictures of the stroke, and luminosity measurements as a function of
fi’ time. These would help establish a more accurate means of deriving
- current parameters from field data. The pictures would establish
;?Q orientation and tortuosity profiles. The luminosity data would establish
;pl the velocity of propagation more accurately.
- 1Ly
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4. Luminosity measurements. More data is needed to estabiish velocities of
propagation near the ground as a function of distance away from the
inttiation point. Velocities are needed to establish more reliable means
of obtaining current parameters from field data and for checking
theoretical lightning models.

5. Reprocess the existing data base. The most effective way to establiish a
more accurate AEH threat is to compilie and evaluate all existing lightring
data to date. This approach could bring the uncertainty down to within a
factor of two from the present ALHP threat. To analyze the presently
available data more appropriately:

2. Raw data must be collected and experimental setups and limitations
established from unpublished sources.

b. Quantify errors/uncertainties to put the experimental data on a common
basts.

Cc. Derive the statistical threat 1levels from the <total data base
accumulated.

A complete 1ightning definition program would pursue all the ijtems listed
above as cost allowed. The most effective approach, however, is item (5]}.
This approach also has the possible advantage of establishing future
calibration needs for various types of experiments. This could lead to better
quality data being obtained from future efforts to quantify naturally
occurring electricity environments.
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